1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import LoraConfig, get_peft_model, PeftModel
import torch
import random
import time
model = AutoModelForCausalLM.from_pretrained(
"./Qwen",
device_map="auto",
trust_remote_code=True,
)
peft_config = LoraConfig(
task_type="CAUSAL_LM", inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"]
)
model = PeftModel.from_pretrained(model, "lora_adapter10-30")
print("load peft")
tokenizer = AutoTokenizer.from_pretrained("./Qwen")
prompt = "your system prompt"
prompt_u = "your user prompt"
MAX_LENGTH=1500
def predict(messages, model, tokenizer):
device = "cuda"
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
attention_mask = torch.ones(model_inputs.input_ids.shape,dtype=torch.long,device="cuda")
generated_ids = model.generate(
model_inputs.input_ids,
attention_mask=attention_mask,
max_new_tokens=MAX_LENGTH,
temperature=1.0,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
save_dir="./seeds/"
total=0
for i in range(10):
start_time=time.time()
messages = [
{"role": "system", "content": f"{prompt}"},
{"role": "user", "content": f"{prompt_u.format(num=random.randint(5, 40))}"}
]
response = predict(messages, model, tokenizer)
end_time=time.time()
total += end_time - start_time
print(f"Generation time: {end_time - start_time:.2f} seconds")
response_text = f"""
LLM:{response}
"""
print(response_text)
file=f"{save_dir}seed_{i}.txt"
with open(file, "w") as f:
f.write(response)
print(f"average generation time: {total/10:.2f} seconds")
|